AviTrader sponsorship ad

Approaching Retirement Age

RB211-535 maintenance (c) Standard Aero

An Insight Into Maintenance Management of Aged Aircraft Engines

By David Dundas

As technology changes and new materials are being used in the construction of aircraft engines, so these engines have a longer lifecycle and this, in turn, requires adapted maintenance management programmes. More recently, the considerable delays and backlogs relating to the delivery of new aircraft has seen the lifecycle of legacy aircraft extended, creating even more challenges for engine MRO specialists. To find out more about the challenges and vagaries of maintaining aged aircraft engines, we enlisted four of the industry’s leading engine MROs to share their thoughts with us.

What is classed as an aged aircraft engine and what challenges are associated with its maintenance?

For Virgil D. Pizer, Chief Executive Officer, Pem-Air Turbine Engine services: “An aged aircraft engine refers to one that has been actively used for an extended time, often surpassing its intended service life. This definition focuses more on its operational history— such as flight hours and the number of take-off and landing cycles—rather than its actual chronological age.” In terms of the unique challenges presented by aged engines, Virgil identifies corrosion and fatigue as ones which can lead to weakened metal components and the compromising of structural integrity. Where maintenance needs are concerned, shop visits tend to be more frequent and inspections more comprehensive, while there are also difficulties associated with finding spare/replacement parts. You then have to add rising costs through specialised repairs and increased labour hours with meeting new regulations that were not in place when legacy engines were produced and expenditure and retrofits and associated technology.

Abhijeet Dey, Director of Asset Management, Setna-iO LLC. is aligned with Virgil D. Pizer, advising that: “Aged engines are generally those motors that have been in service for a long period of time (hours /cycles). Such engines suffer internal hardware and performance degradation due to operational duress.” He adds that: “Most matured engines in today’s civil aviation industries have a fleet with a large number of aged engine still operating. The biggest challenges are keeping up with its performance and operational efficiency while keeping up with Maintenance cost and risk involved. In the case of aged, ‘matured’ engines, it is much about following a defined work scope generated over years of operational history of such engine types.”

At StandardAero, David Williams, Director of Global RB211 Sales adds an additional viewpoint in that as far as the industry is concerned, there is no formal definition of what constitutes an aged engine but he adds that a key common factor is often that the powerplant in question is no longer in production. “While on the one hand this means that operators no longer have to compete with the production line for parts, it may also mean that the OEM’s own supply chain focus has switched to newer models, resulting in longer parts lead times and sourcing challenges.  Likewise, the OEM’s repair development focus may switch to newer powerplants, leaving operators reliant on third parties for new component repair schemes,” he says.

John McCarthy, Director Business Development, Europe, VAS Aero Services is more precise in his opinions of what constitutes an aged engine, with good reasoning: “VAS Aero Services views an aged aircraft engine to be typically in the range of 18 years or older, a generation of engines which were considered leading technology in the 1990s and having strong production rates through the 2010s. Likely its design and technology will be derived from the cutting-edge engineering of the 1970s and 1980s.” He then adds that “The unique challenge with older engines, in the event of problems with the engine, entails the decision between repairing or replacing the unit. This decision will be much more sensitive to the repair investments involved, including the lead-time to accomplish the full scope of work. An unplanned expensive shop visit will likely be the end of the engine’s operational life.”

Strategies which have proven most effective in extending the service life of older engines

On the operational side, engine derating and economical flight routes often play a key role to ensure the lengthening of the on-wing time of engines. In the opinion of Abhijeet Dey, it is also important to keep “the engine’s internal hardware up to date with latest SBs and ADs as well as ensuring that regular maintenance is carried out (enhanced condition monitoring). Also, it has been observed that many operators who had gained in-depth experience of operating such engine types ensures a regular communication with the OEM to keep the MPD task updated/revised based on their operational experience.”

One strategy undertaken by OEMs can be to team up with a trusted MRO provider, who then becomes the end-of-life engine maintenance service partner for an aged engine. According to David Williams, “Rolls-Royce has taken this approach on the RB211-535 turbofan, which powers over 60% of the 530+ Boeing 757s still in service, selecting StandardAero as its life-of-type partner for the engine in 2018.” On the other hand, John McCarthy succinctly concludes that: “Optimum use of on-wing maintenance has proven very effective in extending the life of older engines. Procedures such as top and bottom case blade replacement and boro blending will optimize an engine’s life while avoiding the considerable costs of an engine shop visit.”

Virgil D. Pizer provides a comprehensive list of strategies to be adopted, advising that conducting regular and detailed inspections enables the early detection of wear and tear, corrosion, and fatigue damage, while utilising premium lubricants and conducting regular oil changes can greatly minimise engine wear. He also suggests that regularly performing overhauls and reconditioning of engine components can rejuvenate performance and prolong the engine’s lifespan, while adopting modern technologies like advanced monitoring systems and diagnostic tools can enhance engine performance and foresee potential failures before they happen. He mentions that certain operators collaborate with engine manufacturers to prolong the time between overhauls (TBO) by demonstrating reliability and adhering to proper maintenance protocols, and that modifying flight operations to lessen engine stress, like optimizing take-off and landing procedures, can help reduce wear and prolong the engine’s life. He concludes that: “By implementing these strategies, airlines and maintenance providers can successfully prolong the service life of older aircraft engines, ensuring both safety and reliability while efficiently managing costs.”

Engine types best suited to increased use of used serviceable material (USM)

USM can be a valid option for operators facing long lead-times for new parts, especially when operators have specific requirements for how many cycles remaining they want out of their engines.  A key driver with regards to the use of USM is – of course – the availability of good quality material, i.e., from retired engines. David Williams explains further. “As such, a well-structured fleet retirement by a major airline with good maintenance practices will often result in the most attractive pool of USM, e.g., compared to aircraft (and engines) which have seen use with multiple operators, and which are thoroughly worn out by the time they reach the boneyard.  Older types will occasionally come back into demand as a result of operational issues with newer models, which may then limit the availability of good quality USM.  This has recently been the case with the A320 / B737NG and the CFM56-5B/7B / V2500, following the in-service issues affecting the A320neo and 737 MAX.”

Virgil D. Pizer provides some excellent examples of older engine types that lend themselves well to the increased application of USM, such as the CFM56 Series of engines which is extensively utilised in both narrow-body and wide-body aircraft, resulting in a large availability of USM parts thanks to its widespread use over the years. He also includes the GE90 series employed on Boeing 777 aircraft and the V2500 Series which is predominantly used on Airbus A320-family aircraft. “Utilizing USM can result in substantial cost savings, with these parts typically being 60-80% less expensive than new OEM parts. Moreover, the ready availability of USM parts assists airlines in controlling maintenance costs and minimising downtime,” he concludes.

Beyond the CFM56, GE90 and V2500 series of engines, Abhijeet Dey also includes the PW4000 and CF6-80 on the list of engine types, pointing out that such engine programmes have the following factors working in their favour:

  • A significant number of engines have been retired and torn down
  • There are multiple options for component repair due to the availability of many repair facilities
  • There are fewer OEM-driven USM programmes
  • There is easy availability of USM to assist in rebuilding of engines or for any MRO shop visits
  • The development of multiple OEM-approved repair programmes for USM

John McCarthy is of the opinion that the cost-saving benefits of using USM parts can be applied to almost all engines at all stages of life. He points out that “USM continues to be a preferred choice for mid-life and mature engine platforms due to its cost savings and just-in-time availability. As a leading supplier of USM from engine teardowns and surplus inventory re-distribution, VAS provides ready access to critical USM engine parts to aircraft operators around the world.”

What should we take into account when replacing life-limited parts?

In an ideal world, when replacing an LLP, the LLP’s remaining life would be matched to the expected remaining life of the engine. In some cases, an LPT module replacement can be planned into the programme, which means that out-of-life sequence LLPs can be used. John McCarthy suggests that: “If there are LLPs in the engine that have far more life than the expected life of the engine, the operator should consider exchanging these for more optimised LLPs. The advanced USM community is very capable of capitalising on situations like this.”

Virgil D. Pizer looks at the situation in close up, identifying eight key factors which should be considered to ensure safety, compliance, and cost-effectiveness:

  • Adherence to Regulations: Confirming that the replacement parts comply with aviation authority regulations, such as those set by the FAA or EASA.
  • Part Quality and Certification: Ensuring the use of only certified, high-quality parts that have undergone rigorous testing and received approval for use.
  • Compatibility: Ensuring that the replacement parts are compatible with the existing engine and its components.
  • Remaining Life: Taking into account the remaining service life of the replacement part.
  • Cost Considerations: Assessing the expenses related to replacement parts and their associated maintenance.
  • Documentation and Traceability: Ensuring thorough documentation and traceability for all replaced parts.
  • Manufacturer Recommendations: Following the manufacturer’s recommendations for replacement intervals and procedures.
  • Operational Impact: Evaluating how the replacement will affect the aircraft’s operational schedule.

As already noted, some operators will have specific requirements for cycles remaining, based on their expectation of how long an aircraft will remain in service, which will determine the choice of new parts versus USM.  As David Williams points out: “Where USM is utilised, it is of course essential that operators have full ‘back to birth’ traceability for any LLP, in order to ensure the integrity of the components in question.” On a different tack, Abhijeet Dey is keen to point out that one of the key factors “…will be to determine how many cycles of on-wing green time are we looking to attain from the engine. In theory the second-run engine always has lesser time on wing (TOW) as compared to first-run engines. So, to install NEW LLPs or high CR LLPs in such engines will not be economical. The cost-to-cycle ratio is the most important factor when it comes to LLPs.”

The main challenges maintenance teams face when sourcing parts for older engines

According to David Williams at StandardAero: “one of the biggest frustrations faced when sourcing parts for older engines is facing the scenario where the rebuild of an engine is held up by a handful of components (or just a single obscure part).  This of course highlights the importance of kitting an engine prior to commencing work on it, and – in turn – of ensuring that Cycle 1 (inspection) activity is sufficient robust to anticipate the engine’s material requirements.  In terms of sourcing parts, it’s important for supply chain teams to have a broad network of contacts with parts supply specialists and asset management companies, as those obscure parts can sometimes be found in the strangest places!”

Abhijeet Dey at Setna iO, LLC. Feels that many of the older engines have a lower mod status and when time comes for replacement of component for such engines, there might be a situation where either the component has become obsolete after the OEM has stopped production, no USM is available since older PNs have been upgraded due to SB / AD requirements, or some parts that are very old might not have the best trace documents. He comments: “Also, in some cases, the cost of such components might be really high due to limited availability and can cause financial distress for the operators/engine lessor.”

At VAS Aero Services, John McCarthy feels that one of the key challenges in the current market environment includes the availability of certain high-demand parts, pointing out that in many cases where USM parts are not available, maintenance teams must purchase new parts to complete maintenance events within contractual timelines. He adds that: “…depending on the part, it may be possible to realise residual value for the new parts when the engine comes to end of life,” while concluding that: “Establishing thorough engine documentation and shop visit records allows USM companies to better understand the optimal value of the engine.”

Virgil D. Pizer at Pem-Air Turbine Engine Services has created a shortlist of the main challenges, to include supply chain disruptions, high demand for USM, diminished availability, obsolete parts, cost, regulatory compliance, and documentation and traceability. “These challenges necessitate maintenance teams to be resourceful and proactive in sourcing parts, frequently depending on aftermarket suppliers, repair vendors, and innovative solutions to ensure the continued operation of older aircraft engines,” he advises.

At what point is an engine deemed “beyond economical repair” and should therefore be replaced?

This is partly a financial decision that takes into consideration the current book value of the engine, the maintenance event cost, and the projected value of the engine on its planned retirement, while another factor to consider is the likelihood of the engine running until its planned retirement and the potential to incur additional costs to keep it running.  Additionally, an unplanned maintenance event close to retirement will result in a compromised financial situation.

As John McCarthy suggests, “It’s a balance of financial and engineering experience, and working closely with the USM community and engine shops to see where the optimum can be found. Experienced USM suppliers such as VAS can support airlines and lessors with tailored solutions to help them maximise the value of their engine assets.”

In general terms, an aircraft engine is considered “beyond economical repair” (BER) when the expense of repairing it surpasses the cost of replacing it with a new or refurbished engine. According to Virgil D. Pizer, this determination is generally based on a cost-benefit analysis that takes into account factors such as:

  • Safety and Reliability: Confirm that the repaired engine adheres to all safety and reliability standards.
  • Regulatory Compliance: Adherence to aviation regulations and standards. If repairs cannot guarantee compliance, replacement may be required.
  • Repair Costs: The overall expenses associated with repairing the engine, encompassing labour, parts, and any additional testing or certification needed.
  • Remaining Life: The anticipated remaining service life of the engine post-repair. If the engine has already gone through a significant portion of its lifecycle, investing in repairs may not be justifiable.
  • Operational Impact: The downtime and operational disruptions resulting from the repair process. If the engine is vital to operations, the effects of prolonged downtime may sway the decision.

“When these factors suggest that repairs are not economically viable, the engine is classified as BER and should be replaced,” he concludes.

Meanwhile, David Williams advises that: “The calculation of whether an engine is BER will depend on the cost estimation performed after Cycle 1 (i.e. based on estimated new parts, USM and repair costs), and the customer’s own assessment of the engine’s economics.  One customer may consider a repair estimate to render the engine BER, while a second may consider the bill to be acceptable, depending on their respective needs.  Customers will sometimes ask an MRO to consider a ‘Frankenstein’ build, i.e. utilising multiple donor engines to create a single airworthy powerplant.  This approach may or may not be economical, depending on the condition of the donors and the cost of disassembly and rebuild.”

Abhijeet Dey sums the situation up nice and succinctly: “If the business case for the engine repair is not viable enough to show positive revenue earnings, the engine can be declared as BER.  At any given moment if the teardown value of the engine is more than the operational income of the engine, the engine should be taken off wing for part-out.”

Are there any restrictions regarding economic repair if it is a leased engine?

In David Williams’ opinion: “Lessors have an extremely good understanding of their assets, in terms of financial, technical and operational considerations.  As such, a lessor will have a clear view of what represents an economical repair, and what numbers don’t work.  Lessors may be less likely to accept the use of parts manufacturer approval (PMA) components, since this may impact the value of their assets and the willingness of certain end-users to lease them. Approaching the problem from a slightly different angle, John McCarthy believes that: “The decision to repair or not to repair is similar, whether the engine is owned by the operator or leased. If the repair cost does not make economic sense, it is common with aircraft leases for the Lessor to provide a replacement engine to power the aircraft to the end of the aircraft lease.”

Certainly, there are a number of restrictions when it comes to the economical repair of leased aircraft engines. These restrictions generally arise from the terms and conditions specified in the lease agreement between the lessor and the lessee. Virgil D. Pizer suggests these restrictions will be based on a combination of the lease agreement provisions, regulatory compliance, the Continuous Airworthiness Maintenance Programme (CAMO), and approval from the lessor. He rounds off by saying that: “It’s paramount to review the specific lease agreement and consult with the lessor to comprehend any restrictions or requirements related to the economical repair of leased aircraft engines.”

Clearly in the case of leased engines, the lease return terms and conditions are going to play a vital part. As Abhijeet Dey points out: “In such situations, the lessor has the final say if they want to proceed with utilisation of the accumulated maintenance reserve and LLP reserve for the proposed shop visit or just retire the engine. In the constantly evolving Aero Engine industry, the demand of particular engine type decides whether a US$5m shop visit is economical or if it renders the engine BER. He also points out that: “During the aftermath of COVID-19, a majority of first-run CFM56-7B engines were being retired due to low demand and were routed for teardowns. However, today, most of the 7Bs are now being routed for rebuild due to the high demand.”

Share this Article
Thursday August 14, 2025
Jet2.com has officially opened its new maintenance hangar at Manchester Airport © Jet2
Jet2.com has unveiled a new multi-million-pound hangar at Manchester Airport, a key development to support its operations and future growth. The facility replaces a previous hangar on the site, which was demolished and rebuilt in partnership with technical con... Read More »
Thursday August 14, 2025
Eve Air Mobility
Eve Air Mobility, the Urban Air Mobility (UAM) developer focusing on electric vertical take-off and landing (eVTOL) aircraft, has announced a significant capital raise through a registered direct offering. The company has entered subscription agreements with B... Read More »
Thursday August 14, 2025
AirAsia aircraft © AirTeamImages
GE Aerospace has announced that low-cost carrier AirAsia will adopt its Fuel Insight platform to enhance fuel efficiency across the airline’s fleet. This move represents a renewed collaboration between AirAsia and GE Aerospace’s Software as a Service (SaaS... Read More »
Thursday August 14, 2025
GA Telesis, through its Component Repair Group Southeast (CRGSE) division, has entered into a multi-year supply agreement with a leading aerospace manufacturer. The deal guarantees a steady supply of factory-new proprietary components to support the company’... Read More »
Thursday August 14, 2025
SalamAir
SalamAir, Oman’s low-cost carrier, has taken a major step in its distribution strategy by officially launching its services on the Sabre Global Distribution System (GDS). This integration allows travel agents using Sabre to book SalamAir flights under the ai... Read More »
Thursday August 14, 2025
Ethiopian Airlines Group CCO Lemma Yadecha and African Development Bank Group President, Dr. Akinwumi Adesina, sign a mandated lead arranger agreement authorizing the Bank to mobilize up to $8 billion in financing for the new Bishoftu International Airport
Ethiopia has begun preparations for a US$10 billion plan to build Bishoftu International Airport (BIA), set to rival the world’s largest hubs. The African Development Bank (AfDB) will lead the financing effort, aiming to mobilise nearly US$8 billion. It will... Read More »
Wednesday August 13, 2025
AAR CORP., a major provider of aviation services to commercial and government operators, MROs and OEMs, has acquired Aerostrat. The deal is worth US$15 million plus up to US$5 million in contingent consideration. The move strengthens AAR’s software portfolio... Read More »
Wednesday August 13, 2025
Boeing 737 MAX 8 aircraft
According to Reuters, Boeing delivered 48 aircraft in July 2025, down from 60 in June but five more than in July 2024. This marks the company’s highest number of deliveries for the month since 2017, when it handed over 58 planes. The majority of deliveries l... Read More »
Wednesday August 13, 2025
© CAE
CAE has reported its results for the fiscal first quarter 2026 ended June 30, 2025. Revenue reached CA$1,098.6 million, up from CA$1,072.5 million in the same quarter last year. Earnings per share (EPS) were CA$0.18, compared with CA$0.15 last year. Adjusted E... Read More »
Wednesday August 13, 2025
easyJet
easyJet has finished retrofitting FANS-C technology on 54 of its A320 and A321neo-family aircraft. All new deliveries from Airbus will now arrive with the system installed as standard. FANS-C, a form of advanced traffic management software, improves collaborat... Read More »
Wednesday August 13, 2025
Hawaiian Airlines
Hawaiian Airlines will adjust its transpacific network from November. The carrier will boost capacity on routes with strong demand while suspending three underperforming services. Flights between Honolulu and Incheon, South Korea (five weekly), Fukuoka, Japan ... Read More »
Wednesday August 13, 2025
AeroSHARK application
Lufthansa Technik (LHT) has begun the process to certify AeroSHARK for the Airbus A330ceo, marking the first time the drag-reducing riblet film will be applied to an Airbus model. Developed in partnership with BASF Coatings, AeroSHARK has already proved effect... Read More »
Tuesday August 12, 2025
VT-ANT at Air India hangar in Mumbai before departure to Victorville
Air India has started the wide body retrofit programme for its legacy Boeing 787-8 aircraft. The first plane, VT-ANT, flew to a Boeing facility in Victorville, California in July 2025. Meanwhile, a second aircraft is set to depart in October 2025, with both ex... Read More »
Tuesday August 12, 2025
Corrosion protection
General Atomics AeroTec Systems (GA-ATS) is manufacturing the new Do228 NXT special mission aircraft in Germany. Many main components, including the wings, are now made in-house. Importantly, GA-ATS has introduced a new surface treatment process called tartari... Read More »
Tuesday August 12, 2025
The Cessna SkyCourier is joining Hunnu Air’s fleet in 2026 © Textron Aviation
The Cessna SkyCourier is set to enter Mongolia’s aviation market as charter operator Hunnu Air places the country’s first order for the versatile twin-engine turboprop aircraft. Specifically, the airline has ordered two passenger variants of the SkyCourier... Read More »
Tuesday August 12, 2025
Cathay Pacific Airbus A321neo © HAECO
HAECO has started providing line maintenance support for Cathay Pacific’s Airbus A321neo fleet at Hong Kong International Airport, effective July 1, 2025. This development extends the company’s coverage to the airline’s entire narrow-body and wide-body f... Read More »
Tuesday August 12, 2025
Technical Training Center (TTC)
Gulfstream Aerospace Corp. has opened its newest Technical Training Center (TTC) in Mesa, Arizona, providing dedicated facilities to expand the local workforce and support its growing global fleet. This is the company’s second TTC, following the original fac... Read More »
Tuesday August 12, 2025
Tracey Clark
GT Engine Services, part of STS Aviation Group, has appointed Chief Operating Officer Tracey Clark as its new Managing Director and Accountable Manager, following the retirement of long-serving leader Greg Macleod. Clark will formally take on both roles at the... Read More »
Monday August 11, 2025
The new facility in Ezhou, Hubei, China, has been purpose-built to provide both line and heavy maintenance for cargo
ST Engineering’s Commercial Aerospace business and SF Airlines have officially launched a new airframe maintenance, repair and overhaul (MRO) facility in Ezhou, Hubei, China, through their joint venture, ST Engineering Aerospace (HuBei) Aviation Services. Fo... Read More »
Monday August 11, 2025
Flags in front of Fraport's headquarters © Fraport
Fraport AG has reported a stronger business performance in the second quarter of 2025, driven by passenger growth across its global network of airports. Over the first half of the year, approximately 77 million passengers used Fraport’s Group airports, repre... Read More »

2023 MEDIA KIT

VP Sales & Business Development Americas
Tamar Jorssen
tamar.jorssen@avitrader.com
Phone: +1 (778) 213 8543
VP International Sales & Marketing
Malte Tamm
malte.tamm@avitrader.com
Phone: +49 (0)162 8263049

Subscribe to the most widely accepted news source in the aviation industry!


Free Daily, Weekly and MRO Publications delivered to your Inbox!
News Alerts, Editorials, Marketplace, Executive Interviews +more

Select publications:

*we respect your privacy and AviTrader will not share your email address to any 3rd Parties.